优化法国铁路

问题:




这个工程由AnyLogic公司咨询部门为法国生态部门、可持续发展、交通和住房实施。本国的铁路网络运营商想知道铁路货运是否可以和汽车卡车货运相竞争。他们想让卡车-铁路-卡车运输更加高效。这个项目具体的挑战包括:

  1. 确定应当建立多少铁路货运终端以达到系统功能的最优化。它们的特性也必须被定义,包括位置、利用率和通过这些终端的货运量的参数。
  2. 确定如何组织火车管理。这个包括火车出发时间表(火车只能在特定时间段离开),火车的大小(火车必须足够短,以使站点和终端能够处理它们,但长度又必须使成本有效益)。

Transportation Methods Simulation


解决方案:




方案是创建一个基于智能体的模型。终端、站点、甚至一些特定的铁路网络段被建模为智能体。同时货运、火车和轨道车是被智能体被动管理的元素。这个方案之所以被使用,是因为主要的决策关心站点的货运量。


为了比较两种运输方法,咨询人员决定加倍货运量,并同时使用结合卡车-铁路-卡车的路线和仅仅只使用卡车的路线。货运的最好价格和时间将被一个虚拟的报告人员选择,并反映在数据库上。

结果:




研究表明,使用当前运输网络的结构和价格,仅仅使用卡车比使用结合卡车-铁路-卡车的系统更加便宜和快速。原因主要是由于网络的大小和结构。




咨询人员为客户提供一个灵活的工具来优化现在的铁路网络结构。用户可以使用此工具定位终端,改变开销,火车的大小等,来观察系统如何反应。使用这个工具,客户可以实现观察哪个条件应当被改变以使他们实现使铁路货运更高效的目标。


Optimizing French Railways

More Case Studies

  • 用隧道掘进机建造隧道的仿真模拟
    隧道掘进机向下挖掘一小时的成本往往很高,而项目经理必须在施工过程中尽力避免不必要的延迟。德国鲁尔大学进行了一项仿真实验,其目的是创建一个仿真模型,可以识别隧道建设过程中遇到的瓶颈问题,以尽可能的减少投资损失。
  • 勒阿弗尔港内部铁路物流模拟
    法国勒阿弗尔市港口需要建设新多模式码头的支持。这个问题需要模拟支持集装箱通过铁路火车/河道船舶和其它已有码头之间的运输,它们和海上运输之间转运这些集装箱。
  • 火车站容量模型
    Aurizon澳大利亚最大的铁路货运经营公司,管理着700多辆火车和16000多辆货车。Aurizon从事煤炭、铁矿石和矿产的运输。该公司是世界上最大的将煤炭从矿山运输到港口的铁路运营公司。为了提高运作效率,该公司决定将他们的一个火车站迁移到其他城镇。这个铁路站场主要进行货车机车维修和机车准备。
  • 半导体供应链的牛鞭效应
    大型半导体制造商Infineon的供应链管理部门想要调查其市场中的牛鞭效应,以降低成本,更好地预测市场行为。他们采用 了AnyLogic软件创建了一个供应链模型-模拟原材料到市场的过程。
  • Selecting the Best Inventory Policy Using Gojii
    Existing supply chain and S&OP tool sets do a great job of managing supply to meet a selected "forecast." However, there is no single "correct forecast" of future demand, and existing tools are not designed to select the best demand level for the business. There is a "tool gap" between forecast inputs and selection of the best demand signal (aka "forecast") to drive your S&OP system. Gojii is the tool created by DecisioTech that fills that gap.
  • Distribution Network Planning & Inventory Optimization Supported by Simulation
    Diageo is a British multinational alcoholic beverages company. Diageo Russia is one of Russia’s top five wholesale alcoholic beverage distributors, which is traditionally a low margin business where the bottom line is sensitive to the customer service level and high logistics costs. Diageo sought assistance from the consulting company Amalgama, LLC when they experienced an increase in sales volume, but failed to realize larger profits due to logistics costs per unit.
  • Customer-Centric Transportation Network Modelling
    The public transportation company employed PwC Australia to develop a solution that could provide a customer-centric view of their railway infrastructure and help the company understand the current incident effects on rail network operations and how to improve the situation. PwC consultants decided to build a model of the transportation network that would simulate train movements, incidents, and customers at stations and in trains.
  • CSX Solves Railroad Operation Challenges with and without AnyLogic Rail Library
    CSX is a US railroad company that operates about 21,000 route miles (34,000 km). AnyLogic allows the railroad industry users to simulate line-of-road, terminal, and yard problems. The following three projects, completed by CSX in 2014, covered a variety of tasks that were solved using AnyLogic software.
  • Design and Analysis of Marine System for Oil Transportation in the Arctic by Means of Simulation
    The Novoportovskoye oil and gas condensate field is located in the Yamal peninsula and is owned by Gazprom Neft, the fourth largest oil company in Russia. Oil from the field is transferred via a 100km pipeline to the sea terminal at Cape Kamenny (the Gulf of the Ob river), where it is loaded into arctic shuttle tankers for further transportation to Murmansk. The full field development will start in 2016 and continue for several decades.
  • Preventing “Bus Bunching” with Smart Phone Application Implementation
    In public transport, bus bunching refers to a group of two or more transit vehicles (such as buses or trains), which were scheduled to be evenly spaced running along the same route, instead running in the same location at the same time. Dave Sprogis, Volunteer Software Developer, and Data Analyst in Watertown, MA, used AnyLogic to confirm his thesis that preventing "Bus Bunching" would improve the experience of public transit bus riders.